
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.43101 423

Measuring Code Quality

Ms. Dhanshree Kapse
1
, Ms. Karishma Kabra

2
, Ms. Madhavi Chopade

3
, Mr. Kailas Palhal

4

BE, Department of Computer Engineering, SSBT’s COET Bambhori, Jalgaon (M.S.), India1,2,3,4

Abstract: Every software Industry requires the quality of code. Formal specifications can help with program testing,

optimization, reface, documentation, and, great significance debugging and restore however, they are difficult to do

manually, and automatic mining techniques suffer from 90–99% false positive rates. To address those problems this

project proposes to temporal-property miner by incorporating code quality metrics. This measure code quality by

extracting additional information from the software engineering process, and using this information from code that is

more equal to be correct as well as code that is less equal to be correct. When used as a preliminary processing step for

an existing specification miner, project technique identifies which input is most correct program, the same number of
specifications using only 45% of their original input. As a novel inference technique, this approach has few false

positives in practice (63% when balancing precision and recall, 3% when focused on precision), even though finding

useful specifications (e.g. find many bugs) on over 1.5 million lines of code.

Keywords: Quality, Errorless, Reliably.

I. INTRODUCTION

Buggy behaviour in software costs up to Rs 4410 billion
each year in the software industry. Maintenance of

software is consumed up to 90% of the total cost of

software projects. It is very hard to repair a coding error

[1]. It is hard to imagine software without bugs. Testing is

the detection method of bugs [7]. Writing a correct

program is more difficult. Verification tool find many

errors in programs [3]. More quality of program are hard

for humans to construct, and incorrect programs are

difficult for humans to debug. This project focuses on a

second quality measuring techniques that produce a larger

quality of code and make more precise that may be easier

to evaluate for correctness [1]. The security of code has
become increasingly important in the last decade. More

and more software enterprise applications deal with

sensitive financial data, which, if compromised, in

addition to downtime can mean millions of dollars in

damages. It is important to protect these codes from

hacker attacks [3]. Method for debugging temporal

specifications is found. Given data collected during one or

more programs, the miner generates a large number of

short scenarios. If some of the modules contain errors (as

often happens), some of the scenario traces are also

erroneous [6]. Many projects in the past the centre of
interest on suffers problems caused by the dangerous

nature of C, such as buffer spread over and format string

unsafe. However, in recent years, Java has emerged as the

language of choice for building large complex systems, in

part because of language safety features and eliminates

problems such as buffer overruns [3].Contemporary

software emphasizes components with clearly specified

APIs. Components such as Java library classes have a

clearly specified static interface that consists of all the

(public) methods, along with the types of input parameters

and return values [4].
The rest of this paper is organized as follows. In Section 2,

we describe existing techniques. Section 3 presents

proposed system that clears our approach. Section 4

describes results and Section 5 describes conclusion.

Fig (a) Block diagram

II. EXISTING SYSTEM

There are dozens of existing systems for measuring code

quality. Section describes some of existing techniques and

compares them with proposed system.

A .Specification Mining

 State machines can be observed by a

programmer, to remove impurities the specification and

identify errors, and can be used by automatic verification
tools, to find bugs [7]. It only refines the specification and

identifies errors.

B. Debugging Temporal Specifications with Concept
Analysis

Short program execution traces that program verification

tools generate from specification violations and that

specification miners extract from programs. Manually

finding by investigation is a straightforward way to debug

a specification [6]. But this method is tedious and error-
prone because there may be hundreds or thousands of

traces to inspect.

C. Finding and Preventing Run Time Error Handling

Mistakes

Input
code for
the
quality
measuring

Output
with
percentag
e of input
code

Quality
measure
software

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.43101 424

Dataflow analysis to finding a class of error-handling

mistakes: that arises from either failure to release

resources or to clean up properly along all paths. Many

real-world programs fail to comply such resource safety

policies because of incorrect error handling. Flow-

sensitive analysis keeps track of outstanding act along
program paths and does a marked by exactness and

accuracy modelling of control flow in the presence of

exceptions [5]. But it found only 800 error handling

mistakes almost 4 million lines of Java code.

D. Privately finding specifications

 By sharing data, able to discover specifications, and thus

find out software bugs, than never share data. However,

because sharing data agreement privacy, present a way for

unsettled and publish data and yet still discover large

specifications and bugs than they never shared data. In
aggregate these unsettled traces can be analysed to learn

correct specifications of program behaviour. The unsettled

traces cannot be analysed to determine that one

contributed buggier find by investigation than another.

The learned specifications are of benefit to all [2]. But this

method finds specifications 85% of the bugs that a no-

privacy approach would find.

III. PROPOSED SYSTEM

In above fig(b) can shows that Architecture of system, in

that user can give input as a code it may be in the form of

manually written program or select available program

directly, then this technique can measure the quality of the

software .By measuring quality in the form of complied
with errorless, use of depreciative API’s, use of functions

code reliably that includes use of components, use of

blank spaces, program well written, security that includes

private as well as protected accordingly find the

percentage and display the result.

IV. RESULT
Result Prediction Expected Values Obtained Values

Compiled with

Errorless

 5% 5%

Use of depreciative

API’s

 10% 10%

Use of Functions 30% 15%

Code reliably

Use of Comments 20% 15%

Use of Blank Spaces 10% 10%

Program well

written

 10% 10%

Security

Private / Protected 15% 10%

Quality of Code

 100%

 75%

TABLE 1.1 RESULT OF CODE AS PER MODULES.

The result is displayed in terms of percentage. When the

result is between 70- 100% then the quality of code is

excellent code. When the result is between 50-70% then

quality of code is best, and when the result is below 30-

50% then the quality of code is good, and below 30% the
quality of code is bad. As shown in table 1.1, the quality of

the code is 75%, Hence can conclude that the quality of

code is excellent. There are seven modules are described

in this project. At the result addition of all modules

percentages which are matched with the input code are

displayed. From result percentages the quality of code is

measured. This project is used to select the best quality

code form number of code. As the use of software Indus

try is more efficient for finding out the excellent quality

code.

V. CONCLUSION

Approach improves the performance of existing trace-
based miners by focusing on high-quality traces. This

technique can also be used alone basic miner learns more

specifications and identifies hundreds more violations than

previous miners. A combination of independent, imperfect

code quality metrics may prove useful to other automatic

static analyses that look at source code to draw

conclusions about code or predict faults. Believe that this

technique is an important first step towards real-world

utility of automated specification mining, as well as to the

increased use of quality metrics.

ACKNOWLEDGMENT

We would like to express our deep gratitude and sincere

thanks to all who helped us to complete this paper work

successfully.

Our sincere thanks to principal Dr.Prof.K.S.Wani sir,

SSBT COET for having provided facilities for completion

of our paper work.

Our deep gratitude goes to Dr.Prof.G.K.Patnaik sir,

Head of the department, for getting us opportunity to

conduct this paper work.

We are sincerely thankful to Mr.D.D.Puri sir, guide for

his valuable suggestions and guidance needed at time.

Last but not least we thank the Almighty God who makes
everything happen.

REFERENCES

[1] Claire Le Goues, Westley Weimer “Measuring Code Quality to

Improve Specification Mining”, 2012.

[2] Westley Weimer and Nina Mishra “Privately finding specifications” ,2008.

[3] Benjamin Livshits and Monica S. Lam “Finding Security

Vulnerabilities in Java Applications with Static Analysis “,2005.

[4] R. Alur, P. Cerny, P. Madhusudan, and W. Nam, “Synthesis of

interface specifications for Java classes”, in POPL, 2005.

OR

User

Write a

program

manually

Select the

program

Quality

measuring

software

Display the

percentage

of input

code

Display

the

quality

Fig (b) Architecture of System

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.43101 425

[5] Westley Weimer George C. Necula “Finding and Preventing Run

Time Error Handling Mistakes” 2004.

[6] G. Ammons, D. Mandelin, R. Bodk, and J. R. Larus, “Debugging

temporal specifications with concept analysis in Programming

Language Design and Implementation”,2003, pp. 182195.

[7] Glenn Ammons, Rastislav Bod´ik, James R. Larus “Mining

Specifications”, 2002.

